Factorization systems as double categories

Miloslav Štěpán

Masaryk University miloslav.stepan@mail.muni.cz

Category Theory 2023 June 6, 2023

Plan of the presentation

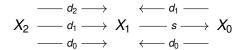
- Some double category theory,
- Orthogonal factorization systems (certain) double categories.

Definition

A *double category X* consists of objects, horizontal morphisms, vertical morphisms, and squares:

The squares can be composed horizontally and vertically and both compositions are associative and unital.

It can be equivalently described as a category object in Cat, i.e. a diagram in Cat satisfying some properties:



Duals

A double category X admits 8 duals: the *vertical opposite* X^v , *horizontal opposite* X^h , *transpose* X^T ... For example:

Basic examples

Example

 ${\mathcal C}$ a category, there is double category ${\sf Sq}({\mathcal C})$ such that:

- objects are the objects of C,
- vertical and horizontal morphisms are morphisms of C,
- squares are commutative squares in C

Example

We will encounter these two of its sub-double categories: $PbSq(C) \supseteq MonoPbSq(C)$

Example

There is double category BOFib of (small) categories, bijections on objects, discrete opfibrations, pullback squares.

Miloslav Štěpán (MU)

Strict factorization systems

Definition

A *strict factorization system* on a category C consists of two wide subcategories $\mathcal{E}, \mathcal{M} \subseteq C$ with the property that: For every morphism $f \in C$ there exist unique $e \in \mathcal{E}, m \in \mathcal{M}$ with:

 $f = m \circ e$.

Definition

Denote by SFS the category whose:

- objects are strict factorization systems $\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}$,
- a morphism $(\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}) \to (\mathcal{E}' \subseteq \mathcal{C}' \supseteq \mathcal{M}')$ is a functor
 - $F : \mathcal{C} \to \mathcal{C}'$ satisfying $F(\mathcal{E}) \subseteq \mathcal{E}'$ and $F(\mathcal{M}) \subseteq \mathcal{M}'$.

Example

Given categories \mathcal{A}, \mathcal{B} , consider $\mathcal{A} \times \mathcal{B}$ and denote:

 $\begin{aligned} \mathcal{E} &:= \{ (f, \mathbf{1}_b) \mid & f \in \operatorname{mor} \mathcal{A}, & b \in \mathcal{B} \}, \\ \mathcal{M} &:= \{ (\mathbf{1}_a, g) \mid & g \in \operatorname{mor} \mathcal{B}, & a \in \mathcal{A} \}, \end{aligned}$

Every morphism $(f, g) \in \mathcal{A} \times \mathcal{B}$ admits a unique $(\mathcal{E}, \mathcal{M})$ -factorization:

 $(f,g) = (1,g) \circ (f,1).$

Miloslav Štěpán (MU)

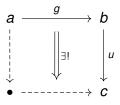
Factorization systs. as dbl cats

June 6, 2023 8/35

Codomain-discrete double categories

Definition

A double category *X* will be called *codomain-discrete* if every top-right corner can be uniquely filled into a square:



Remark

This amounts to requiring that the codomain functor $d_0 : X_1 \rightarrow X_0$ is a discrete opfibration.

Example

Is a double category and its transpose is codomain-discrete.

--- Ta ---

10/35

C.d. double categories voi SFS' (1/2)

Construction

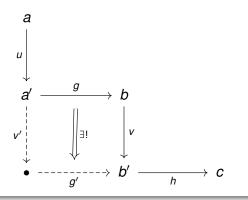
Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of X,
- a morphism *a* → *b* is a tuple (*u*, *g*) of a vertical and a horizontal morphism in *X* (below left):

• the identity on an object a is the corner $(1_a, 1_a)$ (above right).

C.d. double categories vor SFS' (2/2)

The composite of $(u, g) : a \to b$ and $(v, h) : b \to c$ is defined using the unique filler square, in this case it is the corner $(v' \circ u, h \circ g') : a \to c$:



Miloslav Štěpán (MU)

SFS vs DBL

The category of corners Cnr(X) has two canonical wide subcategories consisting of "vertical" and "horizontal" corners:

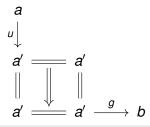
 $\mathcal{E}_X := \{(u, 1) \mid u \in \text{vmor } X\} \qquad \mathcal{M}_X := \{(1, g) \mid g \in \text{hmor } X\}.$

Lemma

Let X be codomain-discrete. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is a strict factorization system on the category Cnr(X).

Proof

Every corner (u, g) factors uniquely as $(1, g) \circ (u, 1)$:



SFS' vor c.d. double categories (1/2)

Construction

Let $(\mathcal{E}, \mathcal{M})$ be two classes of morphisms in a category \mathcal{C} , both closed under composition and containing all identities. Define a double category $D_{\mathcal{E},\mathcal{M}}$ as follows:

- The objects are the objects of *C*,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of \mathcal{M} ,
- the squares are commutative squares in *C*.

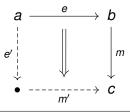
SFS' vor c.d. double categories (2/2)

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a strict factorization system on a category \mathcal{C} . Then $D_{\mathcal{E}, \mathcal{M}}$ is codomain-discrete.

Proof

The unique filler square is given by the unique $(\mathcal{E}, \mathcal{M})$ -factorization of the morphism $m \circ e$ in \mathcal{C} :



SFS' +----> cod. discr. double categories

Theorem

The assignments:

$$(\mathcal{E}, \mathcal{M}) \mapsto \mathcal{D}_{\mathcal{E}, \mathcal{M}},$$

 $X \mapsto (\mathcal{E}_X, \mathcal{M}_X),$

Are equivalence inverse to each other and thus induce an equivalence between strict factorization systems and codomain-discrete double categories.

$$SFS \xrightarrow{Cnr(-)}_{D} CodDiscr$$

OFS <----> (certain) double categories

The goal is to prove an analogue of the above result for orthogonal factorization systems. To do this, we need three ingredients:

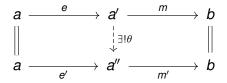
- 1 bicartesian squares,
- invariance,
- 3 the notion of a "joint monicity" of a pair of a vertical and a horizontal morphism in a double category.

Orthogonal factorization systems

Definition

An *orthogonal factorization system* $(\mathcal{E}, \mathcal{M})$ on a category \mathcal{C} consists of two wide sub-categories $\mathcal{E}, \mathcal{M} \subseteq \mathcal{C}$ satisfying:

• For every morphism $f \in C$ there exist $e \in \mathcal{E}$, $m \in \mathcal{M}$ such that $f = m \circ e$, and if f = m'e' is a second factorization with $e' \in \mathcal{E}$, $m' \in \mathcal{M}$, there exists a unique morphism θ so that this commutes:

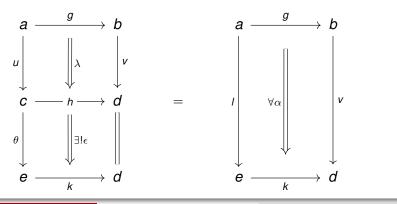


• we have that $\mathcal{E} \cap \mathcal{M} = \{\text{isomorphisms in } \mathcal{C}\}.$

Bicrossed double categories (1/2)

Definition

A square λ in a double category X will be called *opcartesian* if it's an opcartesian morphism with respect to the codomain functor $d_0: X_1 \rightarrow X_0$. In elementary terms:



Miloslav Štěpán (MU)

Factorization systs. as dbl cats

June 6, 2023

Bicrossed double categories (2/2)

Given a double category X, denote $X^* := ((X^v)^h)^T$.

Definition - Ingredient 1

A square λ in a double category X will be called *bicartesian* if it is opcartesian in both X and X^* .

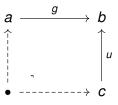
Definition

A double category *X* will be called *bicrossed* it every top-right corner can be filled to a (not necessarily unique) bicartesian square. Moreover, bicartesian squares are closed under horizontal and vertical compositions and identities.

Bicrossed double categories - Examples

Example

C a category with pullbacks, $Sq(C)^{\nu}$, $PbSq(C)^{\nu}$, $MonoPbSq(C)^{\nu}$. In each of these the filler is given by a pullback square:



Example

BOFib $^{\nu}$. This is because both bijections on objects and discrete opfibrations are stable under pullbacks.

Miloslav Štěpán (MU)

Factorization systs. as dbl cats

June 6, 2023

22/35

The category of corners

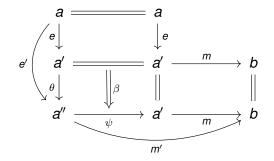
Construction

Let X be bicrossed. Assume every square is bicartesian. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of X,
- a morphism $a \rightarrow b$ is an equivalence class [e, m] of tuples of a vertical morphism followed by a horizontal one in X,
- the identity on an object *a* is the equivalence class $[1_a, 1_a]$ (above right).

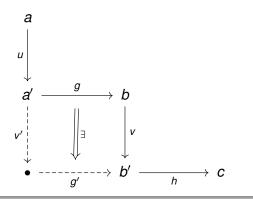
The category of corners

We consider two corners (e, m), (e', m') with the same domain and codomain equivalent if and only if there exists a square β like this:



The category of corners

The composite of $[u, g] : a \to b$ and $[v, h] : b \to c$ is defined using a **choice** of **some** bicartesian filler square, in this case it is the equivalence class $[v' \circ u, h \circ g'] : a \to c$:



Miloslav Štěpán (MU)

The category of corners - Examples

Example

Consider $PbSq(C)^{\nu}$ for C with pullbacks. $Cnr(PbSq(C)^{\nu})$ has objects the objects of C, while a morphism is an equivalence class of corners:

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

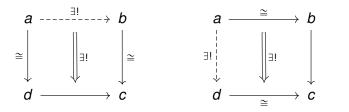
Similarly,

$$\begin{aligned} \mathsf{Cnr}(\mathsf{MonoPbSq}(\mathcal{C})^{\mathsf{v}}) &\cong \mathsf{Par}(\mathcal{C}),\\ \mathsf{Cnr}(\mathsf{BOFib}^{\mathsf{v}}) &\cong \mathsf{Cof}. \end{aligned}$$

Ingredient 2

Definition - Ingredient 2

A double category *X* is *invariant* if the following boundaries admit a unique filler:



Example

All of our previous guests: Sq(C), PbSq(C), MonoPbSq(C), BOFib.

Miloslav Štěpán (MU)

Factorization systs. as dbl cats

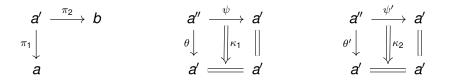
June 6, 2023

27/35

Ingredient 3

Definition - ingredient 3

A top-left corner (π_1, π_2) in a double category *X* is said to be *jointly monic* if, given squares κ_1 , κ_2 pictured below:



We have the following implication:

$$(\pi_1\theta = \pi_1\theta' \land \pi_2\psi = \pi_2\psi') \Rightarrow (\theta = \theta', \psi = \psi').$$

Ingredient 3 - Example

Example

In Sq(C) a pair (π_1, π_2) of pullback projections is jointly monic, as this condition reduces to:

$$(\pi_1\theta = \pi_1\theta' \land \pi_2\theta = \pi_2\theta') \Rightarrow (\theta = \theta').$$

Example

In MonoPbSq(C) any pair (π_1, π_2) is jointly monic because π_1 is a monomorphism.

Example

In BOFib any pair is jointly monic. It can be proven.

Fact. double categories vor OFS'

Definition

A double category *X* is said to be a *factorization double category* if:

- every square is bicartesian and every top-right corner can be filled to a square,
- X is invariant,
- every top-left corner in X^{ν} is jointly monic.

Let X be a factorization double category. Define the classes of "vertical" and "horizontal" corners \mathcal{E}_X , \mathcal{M}_X on the category Cnr(X) as before. We have:

Proposition

Let *X* be a factorization double category. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is an orthogonal factorization system on the category Cnr(X).

Fact. double categories +----> OFS'

Proposition

Let $(\mathcal{E}, \mathcal{M})$ be an orthogonal factorization system on a category \mathcal{C} . Then $D_{\mathcal{E}, \mathcal{M}}$ is a factorization double category.

Theorem

The assignments are again equivalence inverse to each other and induce an equivalence:

$$\mathcal{OFS}$$
 \simeq FactDbl

Examples (1/2)

Example

C a category with pullbacks, MonoPbSq(C)^v is a factorization double category. Thus Cnr(MonoPbSq(C)^v) = Par(C) admits an orthogonal factorization system given by "restricted identity maps" and *total maps*:

Examples (2/2)

Example

BOFib^v is a factorization double category and Cnr(BOFib^v) = Cof comes equipped with an orthogonal factorization system given by (the opposites of) bijections on objects followed by discrete opfibrations.

Example

If $P : \mathcal{E} \to \mathcal{B}$ is a fibration, there is a double category X_P such that:

- objects are the objects of \mathcal{E} ,
- vertical morphisms are P-vertical morphisms,
- horizontal morphisms are P-cartesian morphisms,
- squares are commutative squares.

 X_P is a factorization double category and $Cnr(X_P) = \mathcal{E}$ admits an orthogonal factorization system given by *P*-vertical morphisms followed by *P*-cartesian morphisms.

References

Mark Weber (2015)

Internal algebra classifiers as codescent objects of crossed internal categories

Theory and Applications of Categories 30.50 (2015): 1713-1792.

Miloslav Štěpán (2023)

Factorization systems and double categories *arXiv preprint* arXiv:2305.06714 12(3)

Miloslav Štěpán (MU)

Thank you.